Eigenvalues and eigenvectors

Let
$$A \in \mathbb{R}^{n \times n}$$
. If $0 \neq v \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ satisfy

$$Av = \lambda v$$

then λ is called **eigenvalue**, and ν is called **eigenvector**.

Let $A \in \mathbb{R}^{n \times n}$. If $0 \neq v \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ satisfy

 $Av = \lambda v$

then λ is called **eigenvalue**, and v is called **eigenvector**.

Given a matrix, we want to approximate its eigenvalues and eigenvectors. Some applications:

- Structural engineering (natural frequency, heartquakes)
- Electromagnetics (resonance cavity)
- Google's Pagerank algorithm

...

1/13

The eigenvalues of a matrix are the roots of **the characteristic polynomial**

$$p(\lambda) := \det (\lambda I - A) = 0$$

However, computing the roots of a polynomial is a very ill-conditioned problem! We cannot use this approach to compute the eigenvalues.

(日)

Algorithms that compute the eigenvalues/eigenvectors of a matrix are divided into two categories:

- Methods that compute all the eigenvalues/eigenvectors at once.
- Methods that compute only a few (possibly one) eigenvalues/eigenvectors.

The methods are also different whether the matrix is symmetric or not. In this lesson we will discuss methods of type 2.

イロト 不得 トイヨト イヨト

Definition

We say that a matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if there exists a non singular matrix U and a diagonal matrix D such that $U^{-1}AU = D$.

The diagonal element of D are the eignevalue of A and the column u_i of U is an eigenvector of A relative to the eigenvalue $D_{i,i}$.

Since a scalar multiple of an eigenvector is still an eigenvector, we can choose U such that $||u_i||_2 = 1$ for i = 1, ..., n.

Finally, we observe that if A is diagonalizable, since U is non singular, then the vectors $\{u_1, \ldots, u_n\}$ form a basis of \mathbb{C}^n .

From now on, we assume that the eigenvalues are numbered in decreasing order (in module), i.e.

$$|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

All the eigenvalues of a real symmetric matrix are **real**. Moreover, there exists a basis of eigenvectors u_1, \ldots, u_n , i.e.

$$Au_i = \lambda_i u_i$$

that have real entries and are orthonormal, i.e.

$$(u_i, u_j) = \delta_{ij}$$

The power method

We want to approximate the eigenvalue of A that is largest in module.

$$\begin{array}{ll} v_0 = \text{ some vector with } \|v_0\| = 1. \\ \text{for } k = 1, 2, \dots \\ & w = Av_{k-1} \\ & v_k = w/ \|w\| \\ & \mu_k = (v_k)^H Av_k \end{array} \qquad \qquad \begin{array}{ll} \text{apply } A \\ & \text{normalize} \\ & \text{Reyleigh quotient} \end{array}$$

end

- $(v_k)^H$ denotes the transpose conjugate of the vector v_k
- if A is real and symmetric, since eigenvalues and eigenvectors are real, we can just use real numbers in the algorithm above and $(v_k)^H = (v_k)^T$ is the transpose of the vector v_k . This is the case we will consider in all examples.

イロト イヨト イヨト イヨト 二日

Α ze

The power method

We want to approximate the eigenvalue of A that is largest in module.

$$v_0 = \text{some vector with } ||v_0|| = 1.$$

for $k = 1, 2, ...$
 $w = Av_{k-1}$
 $v_k = w/||w||$
 $\mu_k = (v_k)^H Av_k$

apply A normalize Reyleigh quotient

end

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix. Assume $|\lambda_1| > |\lambda_2|$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_1 \neq 0$. Then there exists C > 0, independent of k, such that

$$\|\widetilde{v}_k - u_1\|_2 \leq C \left| \frac{\lambda_2}{\lambda_1} \right|^k$$
, where $\widetilde{v}_k = \frac{\|A^k v_0\|}{\alpha_1 \lambda_1^k} v_k$.

Proof

We expand v_0 on the eigenvector basis $\{u_1, \ldots, u_n\}$ choosen s.t. $||u_i|| = 1$ for $i = 1, \ldots, n$:

$$v_0 = \sum_{i=1}^n \alpha_i u_i,$$
 with $\alpha_1 \neq 0$

It holds

$$A^k v_0 = \sum_{i=1}^n lpha_i \lambda_i^k u_i$$
 and $v_k = rac{A^k v_0}{\|A^k v_0\|}$

Hence, we can write

$$\widetilde{v}_k = \frac{A^k v_0}{\alpha_1 \lambda_1^k} = u_1 + \sum_{i=2}^n \frac{\alpha_i}{\alpha_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k u_i$$

At this point, it holds

$$\|\widetilde{v}_{k} - u_{1}\|_{2} = \left\|\sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} u_{i}\right\|_{2} \leq \sum_{i=2}^{n} \left\|\frac{\alpha_{i}}{\alpha_{1}} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} u_{i}\right\|_{2} = \sum_{i=2}^{n} \left|\frac{\alpha_{i}}{\alpha_{1}}\right| \left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k}$$

イロト イポト イヨト イヨト 二日

So, we obtain

$$\|\widetilde{v}_k - u_1\|_2 \leq \sum_{i=2}^n \left|\frac{\alpha_i}{\alpha_1}\right| \left|\frac{\lambda_i}{\lambda_1}\right|^k \leq (n-1) \cdot \max_{i=2,\dots,n} \left(\left|\frac{\alpha_i}{\alpha_1}\right|\right) \left|\frac{\lambda_2}{\lambda_1}\right|^k = C \left|\frac{\lambda_2}{\lambda_1}\right|^k,$$

where we have defined $C = (n-1) \cdot \max_{i=2,...,n} \left(\left| \frac{\alpha_i}{\alpha_1} \right| \right)$. Since C does not depend on k, this concludes the proof.

The previous theorem implies that the sequence $\{\tilde{v}_k\}$ converges to the eigenvector u_1 . Since \tilde{v}_k is a scalar multiple of v_k , they have the same direction and this direction converges to the direction of u_1 . As a result, for k that goes to $+\infty$ the vector v_k tends to have the same direction of u_1 . Thus v_k tends to be an eigenvector relative to λ_1 .

Remark

if $|\lambda_2| \ll |\lambda_1|$ the convergence will be fast. On the other hand, if $\lambda_2 \approx \lambda_1$ the convergence will be slow.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

We also have a convergence results for the approximation of the eigenvalue λ_1 .

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix. Assume $|\lambda_1| > |\lambda_2|$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_1 \neq 0$. Then it holds

$$|\mu_k - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right), \quad \text{for } k \to +\infty.$$

For symmetric real matrices, we have a better convergence results:

Corollary

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Assume $|\lambda_1| > |\lambda_2|$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_1 \neq 0$. Then it holds

$$|\mu_k - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right), \quad \text{for } k \to +\infty.$$

Some observations

One of the hypothesis of the previous results is $\alpha_1 \neq 0$, where α_i are defined such that $v_0 = \sum_{i=1}^n \alpha_i u_i$. Clearly, u_1, \ldots, u_n are unknown and we cannot check if v_0 satisfies this hypothesis. Practically this is not a real obstacle. Consider for simplicity the case of $A \in \mathbb{R}^{n \times n}$ symmetric. If we choose v_0 s.t $\alpha_1 = 0$ then:

- in exact arithmetic, we get $\lim_{k\to+\infty} \tilde{v}_k = u_2$ and $\lim_{k\to+\infty} \mu_k = \lambda_2$, as long as $|\lambda_2| > |\lambda_3|$ and $\alpha_2 \neq 0$.
- in *finite arithmetic*, during the iterations of the Power Method, round-off errors cause the appearance of a non-zero component in the direction of u₁, in a certain v_k. When this happens, the method starts to converge towards the dominant eigenvalue λ₁ and its corresponding eigenvector u₁.

For more general $A \in \mathbb{C}^{n \times n}$ (possibly, real and non symmetric) the same happens but one has to use complex finite arithmetic and initialize v_0 as a vector with nonzero real and imaginary entries.

イロト イヨト イヨト イヨト ヨー のくの

A simple stopping criterion for the power method is based on the residual:

Stop when
$$||Av_k - \mu_k v_k|| \leq \texttt{tol}$$

How can we compute other eigenvalues and eigenvectors?

Let $\mu \in \mathbb{C}$ a user-specified parameter that is not an eigenvalue of A, we want to approximate the closest eigenvalue of A to μ , i.e.

$$\lambda_J = \underset{i}{\operatorname{argmin}} |\mu - \lambda_i|$$

Inverse Power method Input: $A \in \mathbb{C}^{n \times n}$, $v_0 \in \mathbb{C}^n$ with $||v_0|| = 1$, MAXITER $\in \mathbb{N}$, tol $\in \mathbb{R}^+$. for k = 1, 2, ..., MAXITER $w = (A - \mu I)^{-1} v_{k-1}$ (equivalently, solve $(A - \mu I) w = v_{k-1}$) $v_k = w / ||w||$ $\mu_k = (v_k)^H A v_k$ (Rayleigh quotient with A) Check the Stopping criterion end Output: μ_k and v_k .

Since μ is not an eigenvalue of A, the matrix $A - \mu I$ is non singular.

Since $Au_i = \lambda_i u_i$, then $(A - \mu I)u_i = (\lambda_i - \mu)u_i$, and then $\frac{1}{\lambda_i - \mu}u_i = (A - \mu I)^{-1}u_i$. Let λ_J be the eigenvalue of A closest to μ , the largest (in module) eigenvalue of $(A - \mu I)^{-1}$ is then $\frac{1}{\lambda_J - \mu}$, and the relative eigenvector is u_J . The inverse power method is just a power method applied to $(A - \mu I)^{-1}$, and the previous results apply: \tilde{v}_k converges to u_J . Since the Rayleigh quotient μ_k is computed with A instead of $(A - \mu I)^{-1}$, it converges to λ_J .

Theorem

Assume $|\mu - \lambda_J| < |\mu - \lambda_i| \forall i = 1, ..., n, i \neq J$ and $v_0 = \sum_{i=1}^n \alpha_i u_i$, with $\alpha_J \neq 0$. Then

$$\lim_{k \to +\infty} \mu_k = \lambda_j$$

and

$$\lim_{k \to +\infty} \|\widetilde{v}_k - u_J\|_2 = 0, \qquad \text{where } \widetilde{v}_k = \frac{\|A^k v_0\|}{\alpha_1 \lambda_1^k} v_k$$

Note that if $\mu = 0$, the method approximates the eigenvalue of A that is smallest in module.