Eigenvalues and eigenvectors

Let $A \in \mathbb{R}^{n \times n}$. If $0 \neq v \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$ satisfy

$$
A v=\lambda v
$$

then λ is called eigenvalue, and v is called eigenvector.

Eigenvalues and eigenvectors

Let $A \in \mathbb{R}^{n \times n}$. If $0 \neq v \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$ satisfy

$$
A v=\lambda v
$$

then λ is called eigenvalue, and v is called eigenvector.
Given a matrix, we want to approximate its eigenvalues and eigenvectors.
Some applications:

- Structural engineering (natural frequency, heartquakes)
- Electromagnetics (resonance cavity)
- Google's Pagerank algorithm
- ...

The characteristic polynomial

The eigenvalues of a matrix are the roots of the characteristic polynomial

$$
p(\lambda):=\operatorname{det}(\lambda I-A)=0
$$

However, computing the roots of a polynomial is a very ill-conditioned problem! We cannot use this approach to compute the eigenvalues.

Eigenvalues and eigenvectors

Algorithms that compute the eigenvalues/eigenvectors of a matrix are divided into two categories:
(1) Methods that compute all the eigenvalues/eigenvectors at once.
(2) Methods that compute only a few (possibly one) eigenvalues/eigenvectors.
The methods are also different whether the matrix is symmetric or not. In this lesson we will discuss methods of type 2 .

Diagonalizable matrices

Definition

We say that a matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if there exists a non singular matrix U and a diagonal matrix D such that $U^{-1} A U=D$.

The diagonal element of D are the eignevalue of A and the column u_{i} of U is an eigenvector of A relative to the eigenvalue $D_{i, i}$.

Since a scalar multiple of an eigenvector is still an eigenvector, we can choose U such that $\left\|u_{i}\right\|_{2}=1$ for $i=1, \ldots, n$.

Finally, we observe that if A is diagonalizable, since U is non singular, then the vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ form a basis of \mathbb{C}^{n}.

From now on, we assume that the eigenvalues are numbered in decreasing order (in module), i.e.

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|
$$

Eigenvalues/eigenvectors of a symmetric matrix

Theorem

All the eigenvalues of a real symmetric matrix are real. Moreover, there exists a basis of eigenvectors u_{1}, \ldots, u_{n}, i.e.

$$
A u_{i}=\lambda_{i} u_{i}
$$

that have real entries and are orthonormal, i.e.

$$
\left(u_{i}, u_{j}\right)=\delta_{i j}
$$

The power method

We want to approximate the eigenvalue of A that is largest in module.

$$
\begin{gathered}
v_{0}=\text { some vector with }\left\|v_{0}\right\|=1 \\
\text { for } \mathrm{k}=1,2, \ldots \\
w=A v_{k-1} \\
v_{k}=w /\|w\| \\
\mu_{k}=\left(v_{k}\right)^{H} A v_{k}
\end{gathered}
$$

$$
w=A v_{k-1} \quad \text { apply } A
$$

$$
v_{k}=w /\|w\| \quad \text { normalize }
$$

end

- $\left(v_{k}\right)^{H}$ denotes the transpose conjugate of the vector v_{k}
- if A is real and symmetric, since eigenvalues and eigenvectors are real, we can just use real numbers in the algorithm above and $\left(v_{k}\right)^{H}=\left(v_{k}\right)^{T}$ is the transpose of the vector v_{k}. This is the case we will consider in all examples.

The power method

We want to approximate the eigenvalue of A that is largest in module.
$v_{0}=$ some vector with $\left\|v_{0}\right\|=1$.
for $k=1,2, \ldots$

$$
\begin{aligned}
& w=A v_{k-1} \\
& v_{k}=w /\|w\| \\
& \mu_{k}=\left(v_{k}\right)^{H} A v_{k}
\end{aligned}
$$

apply A normalize
Reyleigh quotient

end

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix. Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ and $v_{0}=\sum_{i=1}^{n} \alpha_{i} u_{i}$, with $\alpha_{1} \neq 0$. Then there exists $C>0$, independent of k, such that

$$
\left\|\widetilde{v}_{k}-u_{1}\right\|_{2} \leq C\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}, \quad \quad \text { where } \widetilde{v}_{k}=\frac{\left\|A^{k} v_{0}\right\|}{\alpha_{1} \lambda_{1}^{k}} v_{k}
$$

Proof

We expand v_{0} on the eigenvector basis $\left\{u_{1}, \ldots, u_{n}\right\}$ choosen s.t. $\left\|u_{i}\right\|=1$ for $i=1, \ldots, n$:

$$
v_{0}=\sum_{i=1}^{n} \alpha_{i} u_{i}
$$

$$
\text { with } \alpha_{1} \neq 0
$$

It holds

$$
A^{k} v_{0}=\sum_{i=1}^{n} \alpha_{i} \lambda_{i}^{k} u_{i} \quad \text { and } \quad v_{k}=\frac{A^{k} v_{0}}{\left\|A^{k} v_{0}\right\|}
$$

Hence, we can write

$$
\widetilde{v}_{k}=\frac{A^{k} v_{0}}{\alpha_{1} \lambda_{1}^{k}}=u_{1}+\sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} u_{i}
$$

At this point, it holds

$$
\left\|\widetilde{v}_{k}-u_{1}\right\|_{2}=\left\|\sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} u_{i}\right\|_{2} \leq \sum_{i=2}^{n}\left\|\frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} u_{i}\right\|_{2}=\sum_{i=2}^{n}\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k}
$$

So, we obtain
$\left\|\widetilde{v}_{k}-u_{1}\right\|_{2} \leq \sum_{i=2}^{n}\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\left|\frac{\lambda_{i}}{\lambda_{1}}\right|^{k} \leq(n-1) \cdot \max _{i=2, \ldots, n}\left(\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\right)\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}=C\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}$,
where we have defined $C=(n-1) \cdot \max _{i=2, \ldots, n}\left(\left|\frac{\alpha_{i}}{\alpha_{1}}\right|\right)$. Since C does not depend on k, this concludes the proof.

The previous theorem implies that the sequence $\left\{\widetilde{v}_{k}\right\}$ converges to the eigenvector u_{1}. Since \widetilde{v}_{k} is a scalar multiple of v_{k}, they have the same direction and this direction converges to the direction of u_{1}. As a result, for k that goes to $+\infty$ the vector v_{k} tends to have the same direction of u_{1}. Thus v_{k} tends to be an eigenvector relaltive to λ_{1}.

Remark

if $\left|\lambda_{2}\right| \ll\left|\lambda_{1}\right|$ the convergence will be fast. On the other hand, if $\lambda_{2} \approx \lambda_{1}$ the convergence will be slow.

We also have a convergence results for the approximation of the eigenvalue λ_{1}.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix. Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ and $v_{0}=\sum_{i=1}^{n} \alpha_{i} u_{i}$, with $\alpha_{1} \neq 0$. Then it holds

$$
\left|\mu_{k}-\lambda_{1}\right|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right), \quad \text { for } k \rightarrow+\infty
$$

For symmetric real matrices, we have a better convergence results:

Corollary

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ and $v_{0}=\sum_{i=1}^{n} \alpha_{i} u_{i}$, with $\alpha_{1} \neq 0$. Then it holds

$$
\left|\mu_{k}-\lambda_{1}\right|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right), \quad \text { for } k \rightarrow+\infty
$$

Some observations

One of the hypothesis of the previous results is $\alpha_{1} \neq 0$, where α_{i} are defined such that $v_{0}=\sum_{i=1}^{n} \alpha_{i} u_{i}$. Clearly, u_{1}, \ldots, u_{n} are unknown and we cannot check if v_{0} satisfies this hypothesis.
Practically this is not a real obstacle. Consider for simplicity the case of $A \in \mathbb{R}^{n \times n}$ symmetric. If we choose v_{0} s.t $\alpha_{1}=0$ then:

- in exact arithmetic, we get $\lim _{k \rightarrow+\infty} \widetilde{v}_{k}=u_{2}$ and $\lim _{k \rightarrow+\infty} \mu_{k}=\lambda_{2}$, as long as $\left|\lambda_{2}\right|>\left|\lambda_{3}\right|$ and $\alpha_{2} \neq 0$.
- in finite arithmetic, during the iterations of the Power Method, round-off errors cause the appearance of a non-zero component in the direction of u_{1}, in a certain v_{k}. When this happens, the method starts to converge towards the dominant eigenvalue λ_{1} and its corresponding eigenvector u_{1}.
For more general $A \in \mathbb{C}^{n \times n}$ (possibly, real and non symmetric) the same happens but one has to use complex finite arithmetic and initialize v_{0} as a vector with nonzero real and imaginary entries.

Stopping criterion

A simple stopping criterion for the power method is based on the residual:

Stop when $\quad\left\|A v_{k}-\mu_{k} v_{k}\right\| \leq$ tol

How can we compute other eigenvalues and eigenvectors?

Let $\mu \in \mathbb{C}$ a user-specified parameter that is not an eigenvalue of A, we want to approximate the closest eigenvalue of A to μ, i.e.

$$
\lambda_{J}=\underset{i}{\operatorname{argmin}}\left|\mu-\lambda_{i}\right|
$$

Inverse Power method

Input: $A \in \mathbb{C}^{n \times n}, v_{0} \in \mathbb{C}^{n}$ with $\left\|v_{0}\right\|=1$, MAXITER $\in \mathbb{N}$, tol $\in \mathbb{R}^{+}$. for $\mathrm{k}=1,2, \ldots$, MAXITER

$$
\left.w=(A-\mu I)^{-1} v_{k-1} \quad \text { (equivalently, solve }(A-\mu I) w=v_{k-1}\right)
$$

$$
v_{k}=w /\|w\|
$$

$$
\mu_{k}=\left(v_{k}\right)^{H} A v_{k} \quad \text { (Rayleigh quotient with } A \text {) }
$$

Check the Stopping criterion
end
Output: μ_{k} and v_{k}.
Since μ is not an eigenvalue of A, the matrix $A-\mu l$ is non singular.

Since $A u_{i}=\lambda_{i} u_{i}$, then $(A-\mu I) u_{i}=\left(\lambda_{i}-\mu\right) u_{i}$, and then $\frac{1}{\lambda_{i}-\mu} u_{i}=(A-\mu I)^{-1} u_{i}$. Let λ_{J} be the eigenvalue of A closest to μ, the largest (in module) eigenvalue of $(A-\mu I)^{-1}$ is then $\frac{1}{\lambda_{J}-\mu}$, and the relative eigenvector is u_{J}. The inverse power method is just a power method applied to $(A-\mu I)^{-1}$, and the previous results apply: \widetilde{v}_{k} converges to u_{J}. Since the Rayleigh quotient μ_{k} is computed with A instead of $(A-\mu I)^{-1}$, it converges to λ_{J}.

Theorem

Assume $\left|\mu-\lambda_{J}\right|<\left|\mu-\lambda_{i}\right| \forall i=1, \ldots, n, i \neq J$ and $v_{0}=\sum_{i=1}^{n} \alpha_{i} u_{i}$, with $\alpha_{\jmath} \neq 0$. Then

$$
\lim _{k \rightarrow+\infty} \mu_{k}=\lambda_{J}
$$

and

$$
\lim _{k \rightarrow+\infty}\left\|\widetilde{v}_{k}-u_{J}\right\|_{2}=0, \quad \quad \text { where } \widetilde{v}_{k}=\frac{\left\|A^{k} v_{0}\right\|}{\alpha_{1} \lambda_{1}^{k}} v_{k}
$$

Note that if $\mu=0$, the method approximates the eigenvalue of A that is smallest in module.

